1. 首页 > 游戏资讯

顺网科技:泛娱乐将成为生成式AI商业化的黄金场域 顺网科技是什么

作者:admin 更新时间:2025-03-15
摘要:近期,2023中国上市公司投资价值峰会暨中国投资基金峰会(以下简称“双峰会”)在北京举办,本次“双峰会”以“创新驱动、价值导航”为主题,旨在...,顺网科技:泛娱乐将成为生成式AI商业化的黄金场域 顺网科技是什么

 

近期,2024中国上市企业投资价格峰会暨中国投资基金峰会(下面内容简称“双峰会”)在北京举办,本次“双峰会”以“创造驱动、价格导航”为主题,旨在探讨上市企业怎样通过创造和价格来驱动自身进步,并引领行业进步的新动向。

会上,顺网科技第一次同享了企业在生成式AI商业化方面的经验,强调泛娱乐将成为生成式AI商业化的黄金场域,并提议生成式AI创业,不要局限于大模型,更需关注场景应用,以及为场景应用提供支撑的中间层。

2024年以来,各大企业争相布局AI领域,导致大模型产品密集落地,形成“百模大战”。然而,虽然各类大模型产品层出不穷,但市场上成熟的生成式AI应用却等于有限。

对此,顺网科技认为,企业在寻觅生成式AI创业时,不仅要注重大模型,更需关注场景应用,以及为场景应用提供支撑的中间层,以帮助企业在竞争激烈的市场中脱颖而出。


2战:其一是模型层面能力的提高;其二是监管合规层面的挑战;其三是业务孵化和商业化。

在场景方面,顺网科技最偏好泛娱乐领域。一方面,休闲娱乐是相对核心的刚性领域。另一方面,泛娱乐行业相对来说容错性会更好。除了这些之后,泛娱乐的传播性更好,能够获取更多用户的认知,更容易让用户领会和运用。由于泛娱乐行业同时具有这三个特性,因此预计在明年后年会有很多的应用和也许性诞生。

其次,在生成式AI的商业化要素,“场景、中间层、模型、算力和数据”,五大要素缺一不可。由于场景是最终触达用户群体的地方,也是商业闭环形成的地方。中间层可以加速试有失程,更快地找到满足用户需求的具体痛点闭环。模型是生成式AI这一轮最核心的能力部分,算力是基础支撑,而数据则是模型的根本。

这一轮生成式AI会带来巨大的生产力变革,但未必会如大家期待的那么快,还需要一点一滴的积累,市场需要有一定耐心。

下面内容是顺网科技在钛媒体2024年中国上市企业双峰会的同享实录,略经编辑:

各位领导、各位主办方的老师、各位嘉宾、各位兄弟,大家晚上好!

从去年底ChatGPT公开到现在,整个互联网行业,甚至各行业都对生成式AI产生了浓厚兴趣,资本市场从一级到二级都有很多动作,今天我代表顺网科技,同享大家对生成式AI的一些认知和操作。

首先简单说明一下顺网科技。顺网科技成立于2005年,一直致力于推动电竞互动娱乐领域的数字化。在18年的进步经过中,顺网科技逐渐切入了四个核心领域,包括算力、电竞、AI陪伴和数字娱乐展会ChinaJoy。这四个板块构成了顺网科技的核心业务,也是大家在生成式AI时代到来时展开新增长的基础。

我先跟大家同享一下“百模大战”的难题。从去年到现在,国内不断涌现出各种团队,包括头部的互联网大厂和新兴的企业,都在做大模型,国内的模型已经超过 200 多个。从现在8月Gartner公开的行业报告来看,整个模型竞争已经进入了技术进步曲线的第壹个峰值阶段。接下来,逐渐有一些相对欠缺资源和欠缺沉淀的团队会退出竞争。

在百模大战的同时,大家也注意到,大家目前能够接触、运用的生成式AI应用特别有限。因此在大家看来,进入生成式AI时代,大家还要面临三个挑战。

第壹个是模型层面能力的挑战。主要体现在核心资源的聚合上,包括算力、数据以及人才层面的博弈。其实这一领域在过去几年一直是冷板凳,尤其是在去年9月份之前都不是热点,甚至于国内相关的出版物也不多。但现在2月份以后,这方面的研究就如雨后春笋般涌现出来,这也是人才稀缺的壹个客观限制。

第二个挑战是在监管合规层面。要开展负职责的大模型操作,会大幅度增加训练成本和推理成本,因此会给商业化经过带来挑战,这背后是安全和成本之间的取舍。

第三个挑战是业务孵化。在早期投资时,大家也许觉得这一新兴领域很有机会;当行业进步逐步深化时,会发现业务本身的孵化和商业化存在特别多的挑战。如果不能验证业务商业玩法是否有效,能不能形成良好的现金流和利润,生成式AI就有也许会进入瓶颈情形,实际上现在已经在这样壹个情形了。

大家团队在看待生成式AI创业时,领会不仅仅局限于大模型,大模型有相应的团队和相应层次的玩家在做。大家更关注场景应用,以及为场景应用提供支撑的中间层,这里还有很多机会。

场景方面,顺网科技最偏好泛娱乐领域。首先,休闲娱乐对消费者而言,是相对核心的领域,因此它的需求是很充分的。其实历史上很多新技术都是从泛娱乐领域率先落地。

其次,泛娱乐领域相对来说容错性更好。很多生成式AI应用一旦用到正式的商业场合,就会面临服务、化解方法等方面稳定性、可靠性的难题。因此在当前这个阶段,找到相对高容错的场景,是做好这一轮生成式AI商业化的重要环节。

另外,泛娱乐的传播性更好,能够获取更多用户的认知,更容易让用户领会和运用。因此大家认为,泛娱乐行业刚好具有这三个特性,在明年后年会有很多的应用和也许性诞生。

最近二十年,大家的很多生活习性都在发生转化,例如从微博、微信等文本互动转给短视频互动,甚至未来会有更多即时多媒体通讯形态。这个经过中,用户时刻分布已经在发生迁移,更多的生活场景复刻、还原在线上,因此会有很多通过生成式AI为用户提供陪伴的机会,这也是顺网正在做的。

在大家看来,生成式AI商业化会有两种落地范式:

第一种是现在很多小型团队在做的,他们会直接在大模型上做应用,或者简单地做套壳或商业化。这种玩法反应速度会相对快,可以快速拉起来一部分用户,然而在国内展业,这样容易遇到合规难题。海外展业其实门槛不高,但很容易被大模型把相应的场景能力吸纳,之后逐渐被替代,很多应用从业者已经发现了这个难题。

第二种是大模型加上中间层框架,最后到应用。这一层是从大模型本身的一些局限性出发,补充它的提示工程、答案工程,注入行业垂直模型。同时企业有很多自己多年沉淀的行业数据,未必愿意以公开的方法或者缺乏数据安全的方法提供给大模型,这种场景就需要中间层做支撑。

从顺网科技的操作来看,首先,大家拥有多层次的算力,而且是异构算力,从这种核心的专业计算到常规的低成本推理计算,甚至于到一些特定场景的渲染,面给不同场景可以提供不同类型的算力。这是大家相对见长的,由于大家做上网行业,从基本的设备管理到行业的存储上云、算力上云,以及算力全方位的线上线下一体化调度管理,大家积累了很多经验。

第二点,是在模型和应用支撑的中间层寻觅。这一块构成了顺网科技核心的AGENT能力。准确来说,AGENT是一种生成式人工智能代理的能力,而不是只创建一两个代理的化身。本质上,还是会利用大语言模型擅长的方面,然而对于它不擅长或者也许遇到难题的部分,都需要在这个层级进行封装和场景化适配。
最后是场景。大家接触的用户主要集中在泛娱乐领域,因此大家会提供相应的陪伴服务,包括在上网、电竞等和游戏紧密结合的场域,以及常规的休闲陪伴。
大家认为,想要做好AI应用,需要充裕的算力和高质量的数据。

首先,即便拥有第三方的大模型,如果缺乏足够的算力,就无法将优质数据转化为模型的参数,也就无法真正地将数据沉淀下来。其次是要做推理,如果没有足够的推理算力来服务海量广域的最终用户,那么大模型平台也许会崩掉或暂停服务。这对于国内很多创业团队和上市企业来说,也一个需要化解的难题。
算力不仅关乎计算能力本身,还关乎计算所需的时刻。比如,大家所在的电竞行业、游戏娱乐领域所需要的渲染算力,需要特别低的时延,通常是毫秒级。而在其他非时刻敏感的应用场景下,也许不需要那么高的实时性。因此整体的算力应当构建成壹个多层次的算力网络和算力资源池。

其次,推理的核心在于高质量的数据,这些数据应当和自身应用场景相契合。大家认为,高质量的行业数据必须满足三个维度:深度、广度和时刻跨度。深度方面,即在该行业中拥有相应的端对端链路数据沉淀,当然,这些数据的获取需要符合相关法律法规。

广度方面,行业不能太小、太垂直,要有一定的市场容量和多细分行业覆盖,否则很难在商业化推广中实现规模化。最后,数据的积累需要一定的时刻跨度。如果没有几年甚至10余年的数据沉淀,就没有相应的训练语料,因此在数据层面,还是需要有足够的时刻积累。

大家来拓展资料一下。在生成式AI的商业化方面,顺网科技认为这五个要素是缺一不可的:场景、中间层、模型、算力和数据。

场景是最终触达用户群体的地方,也是商业闭环形成的地方。中间层可以加速试有失程,更快地找到满足用户需求的具体痛点闭环。模型是生成式AI这一轮最核心的能力部分,算力是基础支撑,而数据则是模型的根本。

大家认为,这一轮生成式AI会带来巨大的生产力变革,但未必会如大家期待的那么快,还需要一点一滴的积累,市场需要有一定的耐心。对于上市企业来说,在这方面也会遇到经营层面和孵化层面的挑战,大家也希望能够和行业内更多人士进行探讨,共同寻找更多创造机会,从而实现更好、甚至更快的商业化进程。

最后以顺网科技的使命和愿景作为结束,大家希望科技连接高兴,让行业更加智能,让用户的高兴随手可得。